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AbItnct-The geometric assumption of thinness is applied to an integrodilferentia1 equation which governs
a class of secondary creep problems in such a way as to reduce it to a fint order ordinary differential
equation. Results are then obtained for solutions of the latter equation concerning monotonicity and
asymptotic: behavior and comparing them with solutions of the original equation at infinity. Also, for spec:ial
cases, various closed form solutions are presented.

\. INTRODUCTION
It is well known that, in compound structures, creep effects are most important in those
members which are in some sense thin, such as beams and plates. In the case of steady-state
creep, the derivation of equations of thin objects such as plates and shells can, for many
problems, be accomplished by using the techniques of linear elasticity in a somewhat modified
form (see for example [1]). A difficulty arises in the case of transient creep if one wishes to
include the effect of stress redistribution under cons~t loads. A powerful technique for
dealing with this problem is the construction of an appropriate variational principle (see
Rabotnov[2] Chapt. XI).

This paper considers a simple but technically important class of problems in which the
introduction of the thinness approximation can be accomplished directly without need to resort
.to variational techniques and in such a way as to guarantee that the stress redistnbution effect
is inclUded. Namely, these are the problems which are governed by eqn (3.1) of [3] (eqn (2.1)
below). Included are cylindrical and spherical pressure vessels subject to internal pressure,
beams with symmetric cross-sections undergoing pure bending and circular beams and thin
strips under torsion. The assumed strain-stress law takes the form:

1 l'EI; =E [(1 +V)O'I;- v6ljCTu] + 0 F(O',)Slj d'T

6.. '(3)Si; =O'lj - TO'u, 0', =V 2SljSlj • (1.1)

Roughly speaking, the technique involves approximating a quantity which is known to be
constant in r at t =00 by a function which is linear in r for all t > O. This can be done in such a
way that (2.1), which is actually an integrodifferential equation in rand t, is replaced by a single
first order ordinary differential equation (2.33). In the present era of programmable calculators,
this is practically equivalent to solving the problem in closed form. Such an approximation
would seem to be especially appropriate for problems such as the pure bending of beams and
the torsion of thin strips in which a thin body assumption was used in the derivation of the
original equation.

In Section 2, the basic ordinary differential equation (2.33) is derived. In order to achieve a
single equation, it turns out that the two cases a>0 and a =0, where a is the lower limit of the
space variable r, require separate treatment. The dependent variable set) in (2.33) is actually
s(b, t). However, from it, other values s(r, t) are readily obtained.

In Section 3, it is rigorously proved that set) tends monotonically to a limit s(oo). In Section 4,
this limit is compared to.s(b,oo). It is shown that the ratio s(oo)/s(b,oo) tends to unity as h~O in
the case a > O. For s =0, it is shown that, in most of the important special cases, the ratio is

tThis research was supported by the National Science Foundation under Grant MCS 79-03393.

741



742 w. S. EDELSTEIN

also independent of h. Since s(O)/s(b, O) equals unity in all cases, it is plausible that s(t) would
furnish a good approximation for all time.

Section 5 contains several closed form solutions of (2.33), both for the case of a constant
applied load and for unloading. Such solutions are common for steady-state creep, but are rare
in the case of transient creep. The only example of which this author is aware occurs in[4], in
which a collocation approximation is used in a beam problem.

The method used here for discretizing the spatial dependence of a function of space and time
in order to obtain differential equations in time only is closely related to that employed by
Einarsson [5] for the numerical integration of a certain class of integrodifferential equations
which also have their origins in creep theory. Moreover, Einarsson also chooses his ap­
proximation so as to preserve asymptotic convergence. However, the present paper differs
essentially from[5] both in point of view and in the form of the equations treated.

2. DERIVATION OF THE EQUATION

Consider the equation

s(r, t) = ~ (N(t) +L'f H(s)q(~) d~ dr) - L' H(s) dr

(asrsb, t~O)

where

1=f E'q(~) d~.
It is assumed that

q(r»O (O<r<a), 1;e0, 0<1<00.
Also,

H(O) = 0, H'(z) > 0, H"(z) >0 (0 < Z< 00)
and H is odd on (- 00, 00).

One special case of (2.1) is given by eqn (2.36) of [6],

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

which governs the problem of a cylindrical or spherical pressure vessel of inner radius a and
outer radius b subject to a nondecreasing internal pressure. Here, the power law (1.1) has been
assumed. If the restriction that the internal pressure be nondecreasing is removed, then (2.5)
takes the form

Here

CT(r, t) = /Jr- i ( P(t) + /L f 1'1 CT In-ICT dr 1) -/L 1'1 CT In-ICT dr. (2.6)

/3-1 =f ~-/-1 dE, j = 2(cyl), j =3(sphere).

P is proportional to the internal pressure and CT to CTs - CT,. Thus (2.1) includes (2.6) if we take

S=CT, I=-j, 1=/3-1, N=P, H(z)=/Llzln-' z, q=~-I. (2.7)

For 5t-Venant pure bending problems, the equation analogous to (2.1) is (2.24) of [7] with
m =O. In this case s is the tensile stress in that part of the beam (a s x s b) which is under
tension, N equals - M, where M is the moment applied at the ends of the beam and 1=1. Also,
a =0 and corresponds to the center of the beam·.

For a solid or hollow circular beam undergoing torsion, the governing equation is (2.18) of [3],
again setting m =O. Here s is the shear stress CTs.. N is proportional to the torsional moment
and again 1=1. The inner radius a can be either zero or positive depending on whether the
beam is solid or hollow. Finally, we mention eqn (2.22) of [8] for the torsion of thin strips
where, again, 1= 1 and a =O.
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In order to motivate the approximation procedure, we take the formal limit of (2.1) as t .... oc
under the assumptions that N(t) .... N(oc), s(r,t) .... s(r,oc), N(t) .... O, s(r,t) ....Oas t .... oc. Here, a
superposed dot denotes differentiation with respect to time. Thus, if (2.1) is differentiated with
respect to time, and the limit is taken as t .... oc, one obtains

r' fb
H[s(r, oc)] =y G H[s(~, oc)]q(~) d~.

Since
r-'H[s(r, oc)] = C (constant)

it is reasonable to assume that for b - a <C 1, the quantity

cP(r, t). r-' L'H[s(r, '1')] d'l'

(2.9)

(2.10)

(2.11)

is linear in r.t Notice that, if one assumes that cP" C(t) in [a, b] and plugs this into (2.1), the
result is

r'N
s=-

1

which is the elastic solution.
From this point on, it is convenient to set b =a+ h. We write

where
cP,(t) =q,(a, t), q,2(t) =cP(a +h, t).

Therefore, by (2.11) and (2.12), the double integral in (2.1) has the approximate value

where

f
G+It

c.(h) = h-I[(a +h) - r l
G ~'+.q(~) d~]

=1- c2(h) E c(h).

(2.12)

(2.13)

(2.14)

(2.15)

If (2.14) is inserted into (2.1) and the resulting equation is evaluated first at r =a, then at
r =a+h, there results the fonowing system of two equations in two unknowns:

a'N(t)
$.(t) = 1 +a'[c.(h)cP.(t) +c2(h)cP2<t)]-

-l' H[s.('I')] d'l',

S2(t) =(a +~'N(t)+(a +h)'[cl(h)cP.(t) +c2(h)cP2(t)]

-L'H[S2('I')] d'l'.

Here
s.(t) =s(a, t), sit) =s(a +h, t).

tThis leads to the same result as the assumption that ,-1H[s(" OJ is linear in , and is more concise.

(2.16)

(2.17)

(2.18)
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Consider first the case a == O. In all such situations mentioned above, 1==1. However, for
greater generality it will only be required that I> O. It then fonows from (2.4) and (2.11) that
(2.16) is trivially satisfied by taking SI == 0 (this is also required physically) and that (2.11)
becomes

(2.19)

However, at this point, a difficulty arises. For, assuming again that (2.8) holds with N(rxl) >0, it
can be shown that the constant C in (2.10) is nonzero. Therefore, by (2.11) one must expect that
<PI #:°for sufficiently large t.

Consequently, we postpone this case and assume instead a >0, or, without loss of generality,
a == 1. One can henceforth think of the r variable as being nondimensional.

Notice that, by (2.15) and the first of (2.3),

1
1+11

c(h)==h-I[(l+h)-r l
I €'+Iq(€)d€l

> h-I[(l +h)- rio +h)l] == 0,
c(h)< h-I[(1 +h)- rill == 1.

Thus
O<c(h)<1.

Applying (2.11) and (2.15), one can rewrite the system (2.16), (2.11) in the form

N
SI(t) == T+(1- C)(<P2 - <PI)

S2 =(I +h)'[~ +C(<PI- <P2)l
Eliminating the term <PI - <P2. we obtain

N
c(l +hisl +(1- C)S2 =(l +h)' T'

The last two equations imply that

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

For the case a=0, we approximate the r dependence of <P by a straight line through the
points (Ah, <PI), (h, <P2), for some 0< A< 1. The equation analogous to (2.12) is then

It follows that

where

and

1- ()
cl(A.h)=~=l-c2lEc

1-'\

(2.25)

(2.26)

(2.21)
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Clearly 0< Q < 1, so that c > O. In order for c < 1, one must make the restriction 0< A< Q.
If the approximation (2.25) is now inserted into (2.1) and the resulting equation is evaluated at

r = Ah and r = h, one obtains

s\ = (Ah)/[~ +(1- C)(cP2- cPl)], (2.28)

S2 = hl[~ +C(cPl- cP2)] (2.29)

where
Sl(t) = s(Ah, t), S2(t) = s(h, t), (2.30)

and the identity
A' N (2.31)s. +-(1- C)S2 = (Ahi-c Ic

holds. It follows from (2.11), (2.29) and (2.31) that S2 satisfies

Clearly, both (2.24) and (2.32) are special cases of the equation

s(t)=a-I[M(t)+C l' (H[~ -(l-C)~]-aH[S])dTl

(0< a, O<c<l)
With

N
a=(l+hr', M=y, S=S2,

(2.33) becomes (2.24); with
a =A', M =(Ah)'Nr l

(2.32)

(2.33)

(2.34)

(2.35)

it reduces to (2.32). It should be clear from the context as to when S refers to the function of r
and t which satisfies (2.1) and when it refers to the solution of (2.33).

3. STRESS REDISTRIBUTION UNDER CONSTANT LOAD
For the stress redistribution problem, it is assumed that M is a positive constant. In this case,

(3.1)

which implies that S2(0) = s(b, 0) for either a = 1 or a = O. To formally obtain s(oo), one applies
to (2.33) the same reasoning that was used on (2.1) to get (2.9). It turns out that s(oo) must
satisfy

[
M az]H ,-(I-c), =aH(z). (3.2)

Notice that, since H satisfies (2.4), M > 0 and 0 < C < 1, any solution z of (3.2) must satisfy

M
O<z<a(l_c)'

Consider the function

[M az]F(z)=H ,-(I-c), -aH(z).

Since
a [M az]F'(z)=-(l-c)-H' --(l-c)- -aH'(z)<O
c c c

55 Vol. 17. No. 1-8

(3.3)

(3.4)
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for - 00 < Z< 00, the solution of (3.2) (easily shown to exist) is unique. In the case where H is
positively homogeneous of degree n, i.e. H(Az) == A"H(z), (A > 0, - 00 < Z < 00), it takes the form

z == M[(I- c)a +cal/T I
• (3.5)

Assuming that a differentiable solution s(t) of (2.33) exists on (0,00), let us now rigorously
examine its behavior as t -+ 00. We first notice that, for M constant, (2.33) is equivalent to the
initial value problem

Thus

s== a-1cF(s) (t >0),

s(O) == a-1M.

(3.6)

(3.7)

(3.8)

Since by (2.4) H is strictly convex, s(O) ¢ 0, so that s(t) is nonconstant. In fact, as shown in [3]
eqn (3.16), (2.4) implies that

H(p,X»,."H(x) (,.,,>1, x >0).

Applying this result to (3.8), we see that

s(O)<O for a < 1, S(O»O for a> 1.

(3.9)

(3.10)

Notice that a > 1corresponds to the case of the pressure vessel, while for the torsion and pure
bending problems a < 1. Therefore, (3.10) agrees with known stress redistribution behavior for
these cases.

Suppose that, at some time t. >0, s(t.) == O. Then by (3.6), S(tl) == I, where I is the solution of
(3.2). However, the constant function u(t) == z satisfies the initial value problem

Ii == a-1cF(u) (I >0),

u(t.) == z.

Consequently, by a standard uniqueness theorem in the theory of ordinary differential equa­
tions, s(t) E z. Since, by (3.10), s cannot be constant, this means that s is a strictly monotone
function of t, increasing for a > 1and decreasing for a < 1. Also, at no finite time t can s(t) be
a zero of F.

Let a > 1, and let z be the root of (3.2). Applying (3.9) to the right hand side of (3.2), one finds
that

Therefore, due to the monotonicity of H,

Consequently, z must be an upper bound for the set {s(t): t ~O}. This implies that the limit s(oc)
exists and s(oo) s z.

In fact, one can prove that s(oo) == z.t For, by (3.4), (3.6),

s == a-1cF'(s)s <0 (t >0),

so that s(oo) -lim,_s(t) must exist. Since s(t) is bounded, s(oo) must be zero. Therefore,
taking the limit of (3.6) as t -+00, we find that F[s(oo)] == O.

tWe are indebted to Prof. Platon Deliyannis for this observation.
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Summarizing, we have found that, for a > I, s(t) is monotone increasing and

a-1M =s(O)<s(t)<s(oo) (t>O)

747

(3.lt)

where s(oo) is the solution of (3.2). By analogous arguments, it follows that, if a < I, then s{t) is
monotone decreasing, and

s{oo)<s(t)<a-1M (t>O). (3.12)

4. COMPARISON OF EXACT AND APPROXIMATE SOLUTIONS

Since s(O) =s(b, 0), if we can show that s{oo) closely approximates s(b, (0) we will have some
encouragement in the belief that set) uniformly approximates s(b, t) on (O, (0). Clearly, having
evaluated the constant C in eqn (2.10), one can obtain an expression for s(r, (0). To this end,let
us multiply both sides of (2.1) by q{r) and integrate the resulting equation from a to b. It
follows that

f s(r, t)q{r) dr =N.

Letting t -1>00 and applying (2.l0) we get

f' H-'(r'C)q(r) dr =N.

For the remainder of this section, it is assumed that H is positively homogeneous of degree
n> 1. Then H-1 is positively homogeneous of degree 1/n, so that

andt

s{r, (0) =16 •
a fU"q(~) df

s(oo) is, of course, given by (3.5). We wish to compute

M ib
f""q{f) df

I· s(oo) I' a
Itl!!). S(b, (0) =~~ ""'N,.,-b....O"-=[(-=-l---c-)a-+-c-a.....i/",.-"r

Let us first consider tbe case a =I, b =1+h. Then (2.34) applies, and

s{oo) =rl (1+11 ~u"q{~)d~[{l-c){l+h)'((1/")-I)+cr'.
s{b, (0) JI

By (2.2) and (2.IS),

and

lim c = lim h-I[O +h)- r l (I+II ~1+'q(~)dE] ",,1.
11....0 11....0 JI 2

Therefore,
. s(oo)

~J!!). sO +h, (0) =1.

(4.1)

(4.2)

tActually, the second limit requires !he additional assumption q(l) ¢ O. which is satisfied for all cases of physical interest.



748 W. S. EDELSTEIN

In the case a = 0, b = h, it follows from (4.1), (3.5) and (2.35) that

To simplify the analysis, we add the restrictions

q(t) = q~., 1=1, qo>O, v>O.

(4.3)

(4.4)

Included in this class of problems is the torsion of thin strips and solid circular rods and the
pure bending of beams with a rectangular cross-section. Then, using (2.26) and (2.27) we can put
(4.3) in the form

s(oo) _ Qo(l- A)A (n-l)/n

s(h, 00) - (Q - A)A (H)Jn +1- Q'
where

Q=h-1r' (h t'+lq<E>dt=2+v
Jo 3+v

Q =rW(I-(I/n» (h t"nq(f) dt = v +2 .
o Jo v +1/n +1

From (4.3), it is immediate that

s(oo) =1
s(h,oo)

(4.5)

(4.6)

(4.7)

(4.8)

for n = 1 and any 0< A< Q. We wish to show that there exists 0< A< Q such that (4.8) also
holds for n > 1, i.e. that the equation

Qo(1- A)A (n-l)/n

f(A) = (Q _ A)A (n-I)fn +1- Q

has a solution in (0, Q). Since /(0) =0, it suffices to show that

/(Q) =QoQ(n-l)/n > 1.
But by (4.6), (4.7)

+2 (2 +
)

(n-l)/n
Q Q(n-Il/n = V _v

o v+ lIn +1 3+V

(v +2)2 (v+3)l/n
= (v +3)(v + lIn + 1) v+2 .

Let
(v +2)2 (v+3)~

g(x)=(v+3)(v+x+l) v+2 .

Since g(O) > 1 and g(1) = 1, (4.9) holds for all n > 1provided g'(x) < 0 for 0 < x < 1. But,

, (v+3)~ (V+2)2 [(v+3) 1]
g(x)= v+2 (v+3)(v+x+l) In v+2 -v+x+l

and
In (v+3) < 2v+5 <_1_< 1

v+2 2(v+2)(v+3) v+2 v+x+l'

Here we have used the secant line upper bound

z2-1
In z <2Z (z > 1).

(4.9)
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S. CLOSED FORM SOLUTIONS FOR CONSTANT M

In this section, we consider the simplest non-linear creep law,

H(z) =K Iz Iz.

For M constant, (2.33) is equivalent to the initial value problem

By (5.1) and (3.5), the inequalities (3.11) and (3.12) become, respectively,

a-1M < s(I)< M([l- cIa +calnt' (a> 1),

a-1M >s(I» M([l-c]a +cal~-I (a < 1).
In either case,

M as
c-(1-c)c>M (I >0).

Therefore, (5.2) takes the form

. Kc ([M (1 0)aS]2 2)s=-;- c- -c C -as,

Kc (M
2

2M [(I-C)2])=-;- ?'"- 7'(1- clas + -c- a-I as2
•

An important special case occurs when

a=(_C)2.
1-,

749

(5.1)

(5.2)

(5.3)

(5.4)

(55)

(5.6)

(5.7)

This condition is actually realized for hollow circular cylinders subject to internal pressure. The
solution of (5.2), (5.3) is then

(5.8)

Notice that, by virtue of (5.7), S is increasing for a> 1 and decreasing for a < 1, as was
predicted in section 3. It is of interest that, for increasing M not only is the magnitude of s
increased, but also the rate of stress redistribution.

In the general case a ~ c2/(1- C)2, (5.6) becomes

which also has a closed form solution. Here,

KcM2

AI =a[(1- c)2a - c2]'

M(1-c)
A2 = (l - c)2a - c2'

eM
A3 =a 1tZ[(1- C)2a - c2l'

(5.9)

(5.10)



750

Let

Then (5.9) takes the form

By (5.10), (3.5) and (5.3),

W. S. EDELSTEIN

(5.11)

For the sake of definiteness, suppose C > 1/2. Then u(O) < - J for any 0< a < I. Therefore,
since u is monotone, Iu(l) I> I for all t >0 and the solution of the initial value problem (5.2),
(5.3) takes the form

(5.12)

Another interesting class of closed form solutions arises in the case of unloading. Suppose
M(t) =0 for t > 10' Then (5.2) becomes

which, for any power law

H(z) =K IZ In-Iz,

(5.13)

(5.14)

always has a closed form solution. Suppose, for example, that s(to +)> O. Then in some interval
(to, 'I), (5.13) has the form

oS = - KC[C~ C) nan-I +I Jsn. - qsn.

Therefore, for t in (to, t l ),

set) =[en -1)q(1 - to) +s I-n(to +wl/(n-I). (5.15)

It follows that tl = 00. An interesting feature of this result is the algebraic damping of the stress
in the case of unloading as compared with the exponential redistribution for a constant nonzero
load.

6. CONCLUSION

A "thin body" differential equation (2.33) has been derived which governs transient creep for
a class of technically important problems. It has been shown mathematically that solutions of
this equation approximate or equal exact solutions at times zero and infinity and have the
appropriate stress redistribution behavior. Thus (2.33) can be applied directly to creep prob­
lems.

It can also be used for comparison with other thin body theories, such as [2] and those
described in[9].
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